
LIS User’s Guide

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of
Grand Challenge Applications in the Earth, Space, Life, and Microgravity

Sciences

December 2003

Revision 2.3

History:
Revision Summary of Changes Date
2.3 Improvements to Milestone “I” November 30, 2003
2.1 Milestone “I” release November 10, 2003
2.0 Milestone “I” submission August 14, 2003
1.1 Milestone “F” release April 25, 2003
1.0 Milestone “F” submission March 31, 2003

Goddard Space Flight Center
Greenbelt, Maryland 20771

December 2003

1

Contents

1 Introduction 4

2 Background 5
2.1 LIS . 5
2.2 LIS driver . 5
2.3 Community Land Model (CLM) 6
2.4 The Community Noah Land Surface Model 7
2.5 Variable Infiltration Capacity (VIC) Model 7
2.6 GrADS-DODS Server . 8

3 Preliminaries 9

4 Running Modes 10

5 Obtaining the Source Code 11
5.1 Downloading the Source Code . 11
5.2 Source files . 11
5.3 Scripts . 13
5.4 Post-processing . 13

6 Obtaining the Datasets 14
6.1 Downloading the Source Code . 14
6.2 Downloading Parameter Datasets 14
6.3 Downloading the Forcing Datasets 14

7 Building the Executable 15
7.1 General Build Instructions . 15

7.1.1 Required Software Libraries 15
7.1.2 Modifying the Makefile 15

7.2 Defining source directories for compilation 16
7.3 Defining components while building the executable 17
7.4 Compiling GrADS-DODS Support 18
7.5 Generating documentation . 19

8 Running the Executable 20
8.1 Configuring Run Via LIS Card File 20

8.1.1 driver namelist . 20
8.1.2 lis run inputs namelist . 21
8.1.3 domain namelist . 25
8.1.4 parms namelist . 27
8.1.5 geos namelist . 28
8.1.6 gdas namelist . 28
8.1.7 cmap namelist . 28
8.1.8 agrmet namelist . 28
8.1.9 clm2 namelist . 28

2

8.1.10 noah namelist . 28
8.1.11 vic namelist . 29

9 Output Data Processing 30
9.1 Building mapto2D . 30
9.2 Running mapto2D . 31
9.3 CLM Output . 32
9.4 Noah Output . 34
9.5 VIC Output . 36

A LIS Card File 38

B Makefile 42

3

1 Introduction

This is the LIS’ User’s Guide. This document describes how to download and
install the code and data needed to run the LIS executable for LIS’ “Interoper-
ability Prototype” milestone – Milestone “I”. It describes how to build and run
the code, and finally this document also describes how to download output data
sets to use for validation. Updates to this document will provide more detailed
instructions on how to configure the executable and will address the graphical
user interface.

This document consists of 8 sections, described as followes:

1 Introduction: the section you are currently reading

2 Background: general information about the LIS project

3 Preliminaries: general info., steps, instructions, and definitions used
throughout the rest of this document

4 Running modes: different parallel running modes of operation

5 Obtaining the Source Code: the steps needed to download the source
code.

6 Obtaining the Datasets: the steps needed to download the data sets.

7 Building the Executable: the steps needed to build the LIS executable

8 Running the Executable: the steps needed to prepare and submit a
run, also describes the various run-time configurations

9 Output Data Processing: the steps needed to post-process generated
output for visualization

4

2 Background

This section provides some general information about the LIS project and land
surface modeling.

2.1 LIS

The primary goal of the LIS project is to build a system that is capable of
performing high resolution land surface modeling at high performance using
scalable computing technologies. The LIS software system consists of a number
of components: (1) LIS driver: the core software that integrates the use of land
surface models, data management techniques, and high performance computing.
(2) community land surface models such as CLM [3], Noah [5], and VIC [6], and
(3) Visualization and data management tools such as GrADS [1] -DODS [4]
server. One of the important design goals of LIS is to develop an interoperable
system to interface and interoperate with land surface modeling community and
other earth system models. LIS is designed using an object oriented, componet-
based style. The adaptable interfaces in LIS can be used by the developers to
ease the cost of development and foster rapid prototyping and development of
applications. The following sections describe the main components of LIS.

2.2 LIS driver

The core of LIS software system is the LIS driver that controls program exe-
cution. The LIS driver is a model control and input/output system (consisting
of a number of subroutines, modules written in Fortran 90 source code) that
drives multiple offline one-dimensional LSMs. The one-dimensional LSMs such
as CLM and Noah, apply the governing equations of the physical processes of
the soil-vegetation-snowpack medium. These land surface models aim to charac-
terize the transfer of mass, energy, and momentum between a vegetated surface
and the atmosphere. When there are multiple vegetation types inside a grid
box, the grid box is further divided into ”tiles”, with each tile representing a
specific vegetation type within the grid box, in order to simulate sub-grid scale
variability.

The execution of the LIS driver starts with reading in the user specifica-
tions, including the modeling domain, spatial resolution, duration of the run,
etc. Section 8 describes the exhaustive list of parameters specified by the user.
This is followed by the reading and computing of model parameters. The time
loop begins and forcing data is read, time/space interpolation is computed and
modified as necessary. Forcing data is used to specify the boundary conditions
to the land surface model. The LIS driver applies time/space interpolation to
convert the forcing data to the appropriate resolution required by the model.
The selected model is durn for a vector of “tiles” and output and restart files
are written at the specified output interval.

Some of the salient features provided by the LIS driver include:

5

• Vegetation type-based “tile” or “patch” approach to simulate sub-grid
scale variability.

• Makes use of various satellite and ground-based observational systems.

• Derives model parameters from existing topography, vegeation, and soil
coverages.

• Extensible interfaces to facilitate incorporation of new land surface models,
forcing schemes.

• Uses a modular, object oriented style design that allows “plug and play”
of different features by allowing user to select only the components of
interest while building the executable.

• Ability to perform regional modeling (only on the domain of interest).

• Provides a number of scalable parallel processing modes of operation.

Please refer to the software design document for a detailed description of the
design of LIS driver. The LIS developer’s guide describes how to use the exten-
sible interfaces in LIS. The “plug and play” feature of different components is
described in this document.

2.3 Community Land Model (CLM)

CLM (Community Land Model) is a 1-D land surface model, written in Fortran
90, developed by a grass-roots collaboration of scientists who have an interest
in making a general land model available for public use. LIS currently uses
CLM version 2.0. CLM version 2.0 was released in May 2002. The source
code for CLM 2.0 is freely available from the National Center for Atmospheric
Research (NCAR) [3]. The CLM is used as the land model for the Community
Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which includes
the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/).
CLM is executed with all forcing, parameters, dimensioning, output routines,
and coupling performed by an external driver of the user’s design (in this case
done by LDAS). CLM requires pre-processed data such as the land surface type,
soil and vegetation parameters, model initialization, and atmospheric boundary
conditions as input. The model applies finite-difference spatial discretization
methods and a fully implicit time-integration scheme to numerically integrate
the governing equations. The model subroutines apply the governing equations
of the physical processes of the soil-vegetation-snowpack medium, including the
surface energy balance equation, Richards’ [11] equation for soil hydraulics, the
diffusion equation for soil heat transfer, the energy-mass balance equation for
the snowpack, and the Collatz et al. [8] formulation for the conductance of
canopy transpiration.

6

2.4 The Community Noah Land Surface Model

The community Noah Land Surface Model is a stand-alone, uncoupled, 1-D col-
umn model freely available at the National Centers for Environmental Prediction
(NCEP; [5]). The name is an acronym representing the various developers of the
model (N: NCEP; O: Oregon State University, Dept. of Atmospheric Sciences;
A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and H: Hydrologic
Research Lab - NWS (now Office of Hydrologic Development – OHD)). Noah
can be executed in either coupled or uncoupled mode. It has been coupled
with the operational NCEP mesoscale Eta model [9] and its companion Eta
Data Assimilation System (EDAS) [12], and the NCEP Global Forecast System
(GFS) and its companion Global Data Assimilation System (GDAS). When
Noah is executed in uncoupled mode, near-surface atmospheric forcing data
(e.g., precipitation, radiation, wind speed, temperature, humidity) is required
as input. Noah simulates soil moisture (both liquid and frozen), soil temper-
ature, skin temperature, snowpack depth, snowpack water equivalent, canopy
water content, and the energy flux and water flux terms of the surface energy
balance and surface water balance. The model applies finite-difference spatial
discretization methods and a Crank-Nicholson time-integration scheme to nu-
merically integrate the governing equations of the physical processes of the soil
vegetation-snowpack medium, including the surface energy balance equation,
Richards’ [11] equation for soil hydraulics, the diffusion equation for soil heat
transfer, the energy-mass balance equation for the snowpack, and the Jarvis [10]
equation for the conductance of canopy transpiration.

2.5 Variable Infiltration Capacity (VIC) Model

Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model,
written in C, being developed at the University of Washington and Prince-
ton University. The VIC code repository along with the model description
and source code documentation is publicly available at the Princeton web-
site [6]. VIC is used in macroscopic land use models such as SEA - BASINS
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed,
grid-based hydrological model, which parameterizes the dominant hydromete-
orological processes taking place at the land surface - atmospheric interface.
The execution of VIC model requires preprocessed data such as precipitation,
temperature, meteorological forcing, soil and vegetation parameters, etc. as
input. The model uses three soil layers and one vegetation layer with energy
and moisture fluxes exchanged between the layers. The VIC model represents
surface and subsurface hydrologic processes on a spatially distributed (grid cell)
basis. Partitioning grid cell areas to different vegetation classes can approximate
sub-grid scale variation in vegetation characteristics. VIC models the processes
governing the flux and storage of water and heat in each cell-sized system of
vegetation and soil structure. The water balance portion of VIC is based on
three concepts: 1) Division of grid-cell into fraction sub-grid vegetation cover-
ages.

7

2) The variable infiltration curve for rainfall/runoff partitioning at the land sur-
face.
3) A baseflow/deep soil moisture curve for lateral baseflow.

Water balance calculations are preformed at three soil layers and within a
vegetation canopy. An energy balance is calculated at the land surface. A full
description of algorithms in VIC can be found in the references listed at the
VIC website.

2.6 GrADS-DODS Server

A GrADS-DODS Server is a data server built upon the Grid Analysis and
Display System (GrADS) and the Distributed Oceanographic Data System
(DODS).

GrADS is an earth science data manipulation and visualization tool under
development at the Center for Ocean-Land-Atmosphere Studies (COLA) (http:
//http://grads.iges.org/cola.html). See http://grads.iges.org/grads/
grads.html for more detailed information about GrADS.

DODS, also called the Open source Project for a Network Data Access Pro-
tocol (OPeNDAP), is a protocol for serving datasets stored in various formats
over a network. See http://www.unidata.ucar.edu/packages/dods/ for more
detailed information about DODS.

A GDS may be used to provide the LIS driver with the forcing and input
parameter data needed to run an LSM.

A GDS is an optional component of the LIS system. LIS may be run without
using a GDS to access the forcing and input parameter datasets. All necessary
forcing and input parameter datasets may be stored on locally-accessable hard-
disks and read in directly by the LIS driver, provided the computer system has
sufficient memory.

The intent of a GDS for the LIS project is to provide the LIS driver with
subsets of the forcing and input parameter datasets, so that large-scale, high-
resolution domains may be broken-up/parallelized and processed across many
compute-nodes of a Beowulf cluster.

8

http://http://grads.iges.org/cola.html
http://http://grads.iges.org/cola.html
http://grads.iges.org/grads/grads.html
http://grads.iges.org/grads/grads.html
http://www.unidata.ucar.edu/packages/dods/

3 Preliminaries

This code has been compiled and run on both SGI IRIX64 6.5 systems and
Linux PC (Intel/AMD based) systems. These instructions expect that you are
using such a system. In particular you need

Software:

• SGI

– MIPSpro version 7.3.1.1m

– Message Passing Toolkit, mpt, version 1.5.3.0

– GNU’s make, gmake, version 3.77

• Linux

– Absoft’s Pro Fortran Software Developement Kit, version 8.0
or
Lahey/Fujitsu’s Fortran 95 Compiler, release L6.00c

– GNU’s C and C++ compilers, gcc and g++, version 2.96

– MPICH , version 1.2.4

– GNU’s make, gmake, version 3.77

System Resources:

• 250MB to 32GB of memory

• 2.5GB to 46GB of hard disk space

– 64MB for source

– 1.5 GB to 25GB for input data

– 425MB to 20GB for output data

You need to create a working directory on your system that has sufficient
disk space to install and run in. Throughout the rest of this document this
directory shall be refered to as $WORKING.

9

4 Running Modes

The computational and resource requirements increase significantly for global
modeling at such high resolutions such as 5km and 1km. The land surface mod-
eling component in LIS is designed to handle these requirements and perform
high-performance, parallel simulation of global, regional, and local land surface
processes with a number of land surface models.

LIS is designed to operate in a number of high performance running modes
to meet the diverse requirements of a distributed memory and shared memory
platforms. LIS can operate in two different parallel modes based on the way
data is handled by the LIS driver. In the message passing interface (MPI)-based
paradigm, a master processor handles data for the entire domain, computes do-
main decomposition, and subsequently distributes data onto the compute nodes.
This paradigm is limited by the amount of memory available to the master pro-
cessor. On a shared memory platform, a pool of processors can be used to make
a large amount of memory available. To handle increased memory requirements
and the limited resources available on a distributed memory environment, a
GDS-based running mode can be used in LIS. In this mode of operation, the
compute nodes retrieve data from a GDS server. This mode of operation is
no longer constrained by the lack of a large pool of memory on the master
processor.

LIS driver also includes the capabillity to perform regional modeling in addi-
tion to global scales. The domain information can be specified by a user, and the
the LIS driver handles the subsetting tasks. In the MPI-mode, the subsetting
information is derived from a larger domain, whereas in the GDS-mode, the sub-
setting is carried out by requesting appropriate data from the GDS-server. The
details of using these different options are described in the following sections.

10

5 Obtaining the Source Code

This section describes how to obtain the source code and datasets needed to
run the LIS executable.

5.1 Downloading the Source Code

To obtain the source code needed for LIS’ “Interoperability Prototype” revision
2.3:

1. Go to LIS’ “Public Release Home Page”

Go to http://lis.gsfc.nasa.gov/

Follow the “Source Codes” link.

Follow the “LIS 2.3 Code Release” link.

2. From LIS’ “Public Release Home Page”

Follow the “LIS 2.3 Source Code and Scripts” link.

3. Download the source.tar.gz, scripts.tar.gz, and the postproc.tar.gz files into
your working directory, $WORKING/LIS.

4. Unpack these files. Run (in the order listed):

% gzip -dc source.tar.gz | tar xf -
% gzip -dc scripts.tar.gz | tar xf -
% gzip -dc postproc.tar.gz | tar xf -

Unpacking the source.tar.gz file will also create the input directory tree
needed for downloading the input datasets.

5.2 Source files

Unpacking the source.tar.gz file will create a $WORKING/LIS/src sub-directory,
$WORKING/LIS/opendap−scripts, and $WORKING/LIS/utils sub-directories.
The structure of src is as follows:

11

http://lis.gsfc.nasa.gov/

Directory Name Synopsis
driver LIS driver routines
lsm-plugin Modules defining the function table registry of

included LSMs
forcing-plugin Modules defining function table registries of

included model forcing, observed radiation,
and precipitation forcing products.

baseforcing Top level directory for base forcing methods
baseforcing/geos Routines for handlling GEOS forcing product
baseforcing/gdas Routines for handlling GDAS forcing product
obsprecips Top level directory for observed precipitation

products
obsprecips/cmap Routines for handling CMAP precipitation product
obsprecips/huff Routines for handling HUFFMAN precipitation product
obsprecips/pers Routines for handling PERSIANN precipitation product
obsrads Top level directory for observed radiation

products
obsrads/agrmet Routines for handling AGRMET radiation product
iplib Interpolation routines (Adopted from NCEP’s

ipolates library
lib Libraries needed for linking
make Makefile and needed headers
lsms/clm2 Top level clm2 land surface model sub-directory
lsms/clm2/biogeochem Biogeochemistry routines
lsms/clm2/biogeophys Biogeophysics routines (e.g., surface fluxes)
lsms/clm2/camclm share Code shared between the clm2 and cam (e.g., calendar information)
lsms/clm2/csm share Code shared by all the geophysical model components of the

Community Climate System Model (CCSM). Currently contains
code for CCSM message passing orbital calculations and
system utilities

lsms/clm2/ecosysdyn Ecosystem dynamics routines (e.g., leaf and stem area index)
clm2/main Control (driver) routines
clm2/mksrfdata Routines for generating surface datasets
clm2/riverroute River routing (RTM) routines
clm2/utils Independent utility routines
lsms/noah.2.6 Noah land surface model version 2.6
lsms/noah.2.5.2 Noah land surface model version 2.5.2
lsms/vic VIC land surface model
tables Contains the GRIB tables for writing grib output

The $WORKING/LIS/opendap−scripts directory contains the scripts used
by the program to access data from a GDS server. Run the links.sh to generate
all the scripts needed by LIS driver. The $WORKING/LIS/utils directory
contains some helpful utilites including the scripts used by the documention
generator.

12

Source code documentation may be found on LIS’s web-site at
http://lis.gsfc.nasa.gov/Documentation/LIS2.3/lis/index.html

5.3 Scripts

The scripts.tar.gz file contains a script for compiling and building the executable
and a sample card file used for running the LIS executable and for configuring
the individual runs. These are described in Section 8.

Unpacking the scripts.tar.gz file will place the following files into the $WORK-
ING/LIS sub-directory:

File Name Synopsis
lis.crd Sample card file
comp.csh Compile and build script

5.4 Post-processing

The postproc.tar.gz file contains the source and data files needed to build and run
the post-processing utility mapto2D. Post-processing is described in Section 9.

Unpacking the postproc.tar.gz file will create a $WORKING/LIS/postproc
sub-directory. The structure of postproc is as follows:

File Name Synopsis
compile.sh Script to compile the mapto2D executable
gridout.ctl Sample GrADS descriptor file
MASKS Directory containing files used for 1d to 2d mapping
getmask.f90
mapto2D.f90
resolution module.f90
tile2grid.f90

13

http://lis.gsfc.nasa.gov/
http://lis.gsfc.nasa.gov/Documentation/LIS2.3/lis/index.html

6 Obtaining the Datasets

This section describes how to obtain the source code and datasets needed to
run the LIS executable.

6.1 Downloading the Source Code

To obtain the source code needed for LIS’ “Interoperability Prototype” revision
2.3:

1. Go to LIS’ “Home Page”

Go to http://lis.gsfc.nasa.gov/

Follow the “Get LIS Data” link.

The Milestone I link provides links to the land surface parameters and
atmospheric forcing data.

6.2 Downloading Parameter Datasets

Land surface models simulate the physical and dynamical processes of the land
surface. Driven by external forcing, the spatial and temporal evolution of these
processes are intrinsically determined by the physical and dynamical properties,
or parameters, of the land surface. Please follow the link to land surface pa-
rameters under Milestone I to obtain parameter datasets. It is recommended
that the files be organized according to the domain resolution and land surface
model type.

6.3 Downloading the Forcing Datasets

As mentioned earlier, the land surface models in LIS are forced by model-derived
output and satellite and ground-based observations. The datasets are available
at link to atmospheric forcing data under Milestone I data page.

14

http://lis.gsfc.nasa.gov/

7 Building the Executable

This section describes how to build the source code and create LIS’ executable,
LIS.

First perform the steps described in Section ??.
If you are building on a Linux pc system, you must edit the Makefile lo-

cated in $WORKING/LIS/src/make. Change the definition of MPI PREFIX
to the directory where you installed MPICH. Currently MPI PREFIX is set to
/data1/jim/local/mpich-1.2.4-absoft.

Then

1. Change directory into $WORKING/LIS/

2. Run: % ./comp.csh

See Appendix B to see the Makefile.

7.1 General Build Instructions

This section describes how to build the LIS code on a platform other than those
discussed in Section 3.

7.1.1 Required Software Libraries

In order to build the LIS executable, the following libraries must be installed
on your system:

• Message Passing Interface (MPI)

– vendor supplied, or

– MPICH
(http://http://www-unix.mcs.anl.gov/mpi/mpich/)

• Earth System Modeling Framework (ESMF) (http://www.esmf.ucar.edu/)

• bacio

• w3lib

To install the MPI libraries, follow the instructions provided at the MPI
URL listed above.

7.1.2 Modifying the Makefile

This section lists the variables in the Makefile that must be set by the user
before compiling.

15

Variable Description
UNAMES set by call to uname to determine what type of system you are using.

Determine which variable (UNAMES or UMACHINE) will contain the needed
information and use it.

UMACHINE set by call to uname to determine what type of system you are using.
Determine which variable (UNAMES or UMACHINE) will contain the needed
information and use it.

MPI PREFIX path to where mpi libraries are installed
LIB MPI path to mpi libraries
INC MPI path to mpi header files
ESMF DIR path to where esmf libraries are installed
LIB ESMF path to esmf libraries
MOD ESMF path to esmf modules
ESMF ARCH system on which esmf libraries were compiled
FC fortran compiler
CPP C preprocessor
LIB DIR path to where lis libraries are installed
CPPFLAGS flags for C preprocessor
CFLAGS flags for C compiler
FFLAGS flags for Fortran compiler
FOPTS additional options for compiler and linker
LDFLAGS flags for linker
NEW ARCH HERE replace this with the type of system you are

using, either the result from uname -s or uname -m.
E.g., IRIX64 or i686

Note: For linux architectures, the default ESMF ARCH is set to be linux absoft.
For lahey architectures, ESMF ARCH needs to be changed to linux lf95.

7.2 Defining source directories for compilation

A file called Filepath in the $WORKING/LIS/src/make directory specifies all
the source files that will be included during compilation. A sample Filepath is
shown below.

../driver

../lsm-plugin

../forcing-plugin

../iplib

../baseforcing/geos

../baseforcing/gdas

../obsprecips/cmap

../obsrads/agrmet

../lsms/noah.2.6

../lsms/mosaic

../lsms/vic

../lsms/clm2

16

../lsms/clm2/main

../lsms/clm2/biogeophys

../lsms/clm2/biogeochem

../lsms/clm2/camclm_share

../lsms/clm2/csm_share

../lsms/clm2/riverroute

../lsms/clm2/ecosysdyn

7.3 Defining components while building the executable

As described earlier, the design of LIS allows users to define and include only
the components of interest while building the executable. Since Fortran is not
a truly object oriented language, this type of runtime polymorphism can only
be simulated in software.

The LIS developers guide describes how new land surface models, forcing
schemes, etc can be included in LIS. This is achieved by allowing the user to spec-
ify the extensible interfaces such as the ones provided in $WORKING/LIS/src/lsm-
plugin and $WORKING/LIS/src/forcing-plugin directories. Once the user spec-
ifies the components to be used in these interfaces, the Filepath directory can
be modified to include only these components. For example, if a user is inter-
ested in running only one land surface model (say Noah), using only the GEOS
forcing scheme, and no observational forcing products, the Filepath directory
reduces to:

../driver

../lsm-plugin

../forcing-plugin

../iplib

../baseforcing/geos

../lsms/noah.2.6

The extensible interfaces need to be defined as follows:
The lsm plugin method in $WORKING/LIS/src/lsm-plugin/lsm pluginMod.F90

needs to be defined as:

subroutine lsm_plugin
use noah_varder, only : noah_varder_ini
external noah_main
external noah_setup
external noahrst
external noah_output
external noah_f2t
external noah_writerst
external noah_dynsetup

call registerlsmini(1,noah_varder_ini)
call registerlsmsetup(1,noah_setup)

17

call registerlsmdynsetup(1,noah_dynsetup)
call registerlsmrun(1,noah_main)
call registerlsmrestart(1,noahrst)
call registerlsmoutput(1,noah_output)
call registerlsmf2t(1,noah_f2t)
call registerlsmwrst(1,noah_writerst)

end subroutine lsm_plugin

The baseforcing plugin method in $WORKING/LIS/src/forcing-plugin/baseforcing pluginMod.F90
needs to be defined as:

subroutine baseforcing_plugin
use geosdomain_module
external getgeos
external time_interp_geos
call registerget(2,getgeos)
call registerdefnat(2,defnatgeos)
call registertimeinterp(2,time_interp_geos)

end subroutine baseforcing_plugin

The precipforcing plugin method in $WORKING/LIS/src/forcing-plugin/precipforcing pluginMod.F90
and the radforcing plugin method in $WORKING/LIS/src/forcing-plugin/radforcing pluginMod.F90
can be left empty as follows:

subroutine precipforcing_plugin

end subroutine precipforcing_plugin

subroutine radforcing_plugin

end subroutine radforcing_plugin

Similarly, different combinations of using the components can be implemented
defining the interfaces appropriately and chosing the corresponding source files
through the Filepath file.

7.4 Compiling GrADS-DODS Support

The above building instructions generate a LIS executable that reads input data
off of local disk. To compile an executable that uses a GrADS-DODS server 1

to retrieve input data files, you must edit the Makefile. Find the appropriate
FFLAGS definition the Makefile. Add -DOPENDAP to the end of the definition.
Then follow the above building instructions.

1This LIS distribution is configured to retrieve data using LIS’ GrADS-DODS server.

18

7.5 Generating documentation

LIS code uses the ProTex documenting system [2]. The documentation in
LATEXformat can be produced by typing gmake doc in the $WORKING/LIS/src/make
directory. This command produces documentation, generating all the files in
$WORKING/LIS/doc directory. These files can be easily converted to pdf or
html formats using utilites such as pdflatex or latex2html.

19

8 Running the Executable

This section describes how to run the LIS executable. Once the LIS executable
is built, a simulation can be performed using the lis.crd file. As described
earlier, LIS can only be executed through an mpirun script. Assuming that
MPI is installed correctly, the lis simulation can be carried out by the following
command on the $WORKING/LIS directory

% mpirun -np 1 ./LIS

The -np flag indicates the number of processors used in the run. On a multi-
processor machine, the parallel processing capbabilities of LIS can be exploited
using this flag.

8.1 Configuring Run Via LIS Card File

This section describes how to configure your LIS run by manually editting the
Fortran namelists contained in the lis.crd “card file”.

Currently, there are only a handful of options that may be reset using the
card file. They are described in the following sub-sections. The remaining
options should be left untouched.

If you manually edit the lis.crd card file, do not run the LIS executable
via the shell scripts described above. These scripts will over-write your newly
editted lis.crd card file. To run the LIS executable, read an appropriate shell
script to see the necessary commands.

See Appendix A to see a sample lis card file.

8.1.1 driver namelist

In the driver namelist of the card file consists of the following options

LIS%d%DOMAIN
LIS%m%LSM
LIS%f%FORCE
LIS%d%SOIL
LIS%p%LAI

LIS%d%DOMAIN specifies the resolution for the run. Acceptable values are:

Value Description
2 1/4 deg resolution
3 2 × 2.5 deg resolution
4 1 deg resolution
5 1/2 deg resolution
6 5 km resolution

LIS%m%LSM specifies the land surface to run. Acceptable values are:

20

Value Description
1 Noah
2 CLM
3 VIC

LIS%f%FORCE specifies the forcing data source for the run. Acceptable values
are:

Value Description
1 GDAS
2 GEOS

LIS%d%SOIL specifies the forcing data source for the run. Acceptable values
are:

Value Description
1 Original veg-based
2 Reynolds soils

LIS%p%LAI specifies the forcing data source for the run. Acceptable values
are:

Value Description
1 Original veg-based
2 AVHRR-based LAI
3 MOIS-based LAI

8.1.2 lis run inputs namelist

In the lis run inputs namelist of the card file these parameters may be reset:

LIS%o%EXPCODE
LIS%p%VCLASS
LIS%p%NT
LIS%f%NF
LIS%f%NMIF
LIS%f%ECOR
LIS%o%WFOR
LIS%o%WSINGLE
LIS%o%WPARAM
LIS%o%WTIL
LIS%o%WOUT
LIS%o%STARTCODE
LIS%t%SSS
LIS%t%SMN
LIS%t%SHR
LIS%t%SDA
LIS%t%SMO

21

LIS%t%SYR
LIS%t%ENDCODE
LIS%t%ESS
LIS%t%EMN
LIS%t%EHR
LIS%t%EDA
LIS%t%EMO
LIS%t%EYR
LIS%t%TS
LIS%d%UDEF
LIS%o%ODIR
LIS%o%DFILE
LIS%f%GPCPSRC
LIS%f%RADSRC

LIS%o%EXPCODE specifies the “experiment code number” for the run. It is
used in constructing the name of the output directory for the run. Acceptable
values are any 3 digit integer string from 100 through 999.

LIS%p%VCLASS specifies the type of vegetation classification used. The de-
fault value is 1 corresponding to the UMD classification.

LIS%p%NT specifies the number of vegetation types. The default value is 13
corresponding to the UMD vegetation type classification.

LIS%f%NF specifies the number of forcing variables. LIS currently uses 10
variables to force the LSMs

LIS%f%NMIF specifies the number of forcing variables for model initialization.
The default value is set to 15.

LIS%o%ECOR specifies whether to use elevation correction for forcing.
Acceptable values are:

Value Description
0 Use elevation correction for forcing
1 Do not use elevation correction for forcing

LIS%o%WFOR specifies whether to output the ALMA optional forcing vari-
ables. Acceptable values are:

Value Description
0 Do not output forcing variables
1 Do output forcing variables

LIS%o%WSINGLE specifies whether to write each variable to a separate file or
bundle them together. Acceptable values are:

Value Description
0 Write all output variables to a single file
1 Write each output variable in a separate file

22

LIS%o%WPARAM specifies whether to write output for parameters such as the
dominant vegetation type, soil type, lai, albedo, gfrac, etc. Acceptable values
are:

Value Description
0 Do not write parameter output
1 Write parameter output

LIS%o%WTIL specifies whether to write output in a tile domain Acceptable
values are:

Value Description
0 Write output in a 2-D grid domain
1 Write output in a 1-D tile domain

LIS%o%WOUT specifies the output data format Acceptable values are:

Value Description
1 Write output in binary format
2 Write output in grib format

LIS%o%STARTCODE specifies if a restart mode is being used. Acceptable values
are:

Value Description
1 A restart mode is being used
2 A cold start mode is being used, no restart file read

Parameters LIS%t%SSS, LIS%t%SMN, LIS%t%SHR, LIS%t%SDA, LIS%t%SMO, and
LIS%t%SYR are used in constructing the starting time for the run. Acceptable
values are: 2

Variable Value Description
LIS%t%SSS integer 0 – 59 specifying starting second
LIS%t%SMN integer 0 – 59 specifying starting minute
LIS%t%SHR integer 0 – 23 specifying starting hour
LIS%t%SDA integer 1 – 31 specifying starting day
LIS%t%SMO integer 1 – 12 specifying starting month
LIS%t%SYR integer 2001 – present specifying starting year

LIS%o%ENDCODE specifies the termination condition for runs.
Acceptable values are:

Value Description
0 Terminate the program at real-time date (not currently available)
1 Terminate the program at the specified date

2For this release of the code/data, the start time must be between 01 June 2001 and 30
June 2001

23

Parameters LIS%t%ESS, LIS%t%EMN, LIS%t%EHR, LIS%t%EDA, LIS%t%EMO, and
LIS%t%EYR are used in constructing the ending time for the run. Acceptable
values are: 3

Variable Value Description
LIS%t%ESS integer 0 – 59 specifying ending second
LIS%t%EMN integer 0 – 59 specifying ending minute
LIS%t%EHR integer 0 – 23 specifying ending hour
LIS%t%EDA integer 1 – 31 specifying ending day
LIS%t%EMO integer 1 – 12 specifying ending month
LIS%t%EYR integer 2001 – present specifying ending year

LIS%t%TS specifies the time-step for the run. Acceptable values are:

Value Description
900 15 minute time-step
1800 30 minute time-step
3600 60 minute time-step

LIS%o%UDEF specifies the undefined value. The default is set to -9999.
LIS%o%ODIR specifies the name of the top-level output directory. Accept-

able values are any 40 character string. The default value of LIS%o%ODIR is
set to OUTPUT. For simplicity, throughout the rest of this document, this
top-level output directory shall be referred to by its default name, $WORK-
ING/LIS/OUTPUT.

LIS%o%DFILE specifies the name of run time diagnostic file. Acceptable val-
ues are any 40 character string.

LIS%f%GPCPSRC specifies if an observed precipitation forcing scheme is used
or not. Acceptable values are:

Value Description
0 No observed precipitation scheme used
1 use NRL precipitation product
2 use HUFFMANN precipitation product
3 use PERSIAN precipitation product
4 use CMAP precipitation product
5 use CMORPH precipitation product

Currently only CMAP pre-

cipitation product is implemented in LIS. Other schemes are under development.

LIS%f%RADSRC specifies if an observed radiation forcing scheme is used or
not. Acceptable values are:

Value Description
0 No observed radiation scheme used
1 use AGRMET radiation product

3For this release of the code/data, the end time must be between 01 June 2001 and 30
June 2001

24

8.1.3 domain namelist

The domain namelist of the card file specifies the domain information in LIS.
LIS uses an array called kgds that contains domain definition parameters. This
design is adopted from the GRIB grid description used in decoding programs
such as w3fi63 [7].

The domain section in the card file defines two types of domain:

• Running domain: defines domain over which simulation is carried out.

• Data domain : defines the domain over which the data is defined.

Currently it is assumed that the forcing data and all parameter data are defined
in the same domain. In future releases, the flexibility to define domains for each
type of data will be implemented. kgds array indices from 0 to 10 defines the
running domain, 41 to 50 defines the data domain. The ability to define a
running domain different from the data domain enables the user to carry out
simulations in only the area of interest. The runtime options for the kgds array
are shown below. The data domain is defined in a similar fashion with the index
starting from 40.

Variable Description
LIS%d%kgds(1) 0 - Equidistant cylindrical

1 - Mercator cylindrical
3 - Lambert conformal conical
4 - Gaussian cylindrical
5 - Polar stereographic azimuthal

For Latitude/Longitude grids,
LIS%d%kgds(2) Number of points on a longitude circle
LIS%d%kgds(3) Number of points on a latitude circle
LIS%d%kgds(4) Latitude of origin (x 1000)
LIS%d%kgds(5) Longitude of origin (x 1000)
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Latitude of extreme point (x 1000)
LIS%d%kgds(8) Longitude of extreme point(x 1000)
LIS%d%kgds(9) Latitudinal increment
LIS%d%kgds(10) Longitudinal increment
LIS%d%kgds(11) Scanning mode flag

25

For mercator grids,
LIS%d%kgds(2) Number of points on a longitude circle
LIS%d%kgds(3) Number of points on a latitude circle
LIS%d%kgds(4) Latitude of origin (x 1000)
LIS%d%kgds(5) Longitude of origin (x 1000)
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Latitude of extreme point (x 1000)
LIS%d%kgds(8) Longitude of extreme point(x 1000)
LIS%d%kgds(9) Latitude of projection intersection
LIS%d%kgds(10) Reserved
LIS%d%kgds(11) Scanning mode flag
LIS%d%kgds(11) Grid length in longitudinal direction
LIS%d%kgds(11) Grid length in latitudinal direction

For Lambert Conformal grids,
LIS%d%kgds(2) Number of points along X-axis
LIS%d%kgds(3) Number of points along Y-axis
LIS%d%kgds(4) Latitude of origin (x 1000)
LIS%d%kgds(5) Longitude of origin (x 1000)
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Lov orientation of grid
LIS%d%kgds(8) X direction increment
LIS%d%kgds(9) Y direction increment
LIS%d%kgds(10) Projection center flag
LIS%d%kgds(11) Scanning mode flag

For gaussian grids,
LIS%d%kgds(2) Number of points on latitude circle
LIS%d%kgds(3) Number of points on longitude circle
LIS%d%kgds(4) Latitude of origin (x 1000)
LIS%d%kgds(5) Longitude of origin (x 1000)
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Latitude of extreme point
LIS%d%kgds(8) Longitude of extreme point
LIS%d%kgds(9) Longitudinal direction of increment
LIS%d%kgds(10) Number of circles from poles to equator
LIS%d%kgds(11) Scanning mode flag
LIS%d%kgds(12) Number of vertical coordinate parameters
LIS%d%kgds(13) Octet number of list of vertical coordinate

parameters
or location of the list of numbers of points
in each row
or 255 if neither are present

26

For polar stereographic grids,
LIS%d%kgds(2) Number of points on a longitude circle
LIS%d%kgds(3) Number of points on a latitude circle
LIS%d%kgds(4) Latitude of origin (x 1000)
LIS%d%kgds(5) Longitude of origin (x 1000)
LIS%d%kgds(6) Reserved
LIS%d%kgds(7) Lov grid orientation
LIS%d%kgds(8) X direction increment
LIS%d%kgds(9) Y direction increment
LIS%d%kgds(10) Projection center flag
LIS%d%kgds(11) Scanning mode flag

Currently LIS supports latitude/longitude and gaussian grids. The support
for other grid types are under development.

Parameters LIS%d%MAXT and LIS%d%MINA define the subgrid variability. LIS%d%MAXT
defines the maximum tiles per grid (this can be as many as 13, the number of
land cover types in the UMD vegetation classification). In addition, users select
the smallest percentage of a cell for which to create a tile. LIS%d%MINA defines
this parameter. The percentage value is expressed as a fraction.

8.1.4 parms namelist

The parms namelist of the card file specifies the names and locations of param-
eter data common to all land surface models. The data files can be downloaded
from the LIS data site at for different domain resolutions. The following pa-
rameters can be set using the card file:

LIS%p%VFILE
LIS%p%MFILE
LIS%p%SAFILE
LIS%p%CLFILE
LIS%p%ISCFILE
LIS%p%ELEVFILE
LIS%p%AVHRRDIR
LIS%p%MODISDIR

LIS%p%MFILE specifies the location of land/water mask file.
LIS%p%VFILE specifies the location of the vegetation classification file.
LIS%p%SAFILE specifies the sand fraction map file.
LIS%p%CLFILE specifies the clay fraction map file.
LIS%p%ISCFILE specifies the soil color map file.
LIS%p%ELEVFILE specifies the elevation difference between LIS and EDAS

(Eta Data Assimilation System) model grids.
LIS%p%AVHRRDIR and LIS%p%MODISDIR specifies the source for reading in

LAI/SAI data (real time monthly data or climatology) for AVHRR and MODIS
data, respectively. Once the source directory is specified, the program looks for
real time data. If the real time data is not available, climatology data is read
in.

27

8.1.5 geos namelist

geosdrv%GEOSDIR specifies the location of the GEOS forcing files.
geosdrv%NCOLD and geosdrv%NROLD specifies the native domain parameters

of the GEOS forcing data. The map projection is specified in the driver modules
defined for the GEOS routines.

geosdrv%NMIF specifies the number of forcing variables provided by GEOS
at the model initialization step.

8.1.6 gdas namelist

gdasdrv%GDASDIR specifies the location of the GDAS forcing files.
gdasdrv%NCOLD and gdasdrv%NROLD specifies the native domain parameters

of the GDAS forcing data. The map projection is specified in the driver modules
defined for the GDAS routines.

gdasdrv%NMIF specifies the number of forcing variables provided by GDAS
at the model initialization step.

8.1.7 cmap namelist

cmapdrv%CMAPDIR specifies the location of the CMAP forcing files.
cmapdrv%NCOLD and cmapdrv%NROLD specifies the native domain parameters

of the CMAP forcing data. The map projection is specified in the driver modules
defined for the CMAP routines.

8.1.8 agrmet namelist

agrmetdrv%AGRMETDIR specifies the location of the AGRMET forcing files.

8.1.9 clm2 namelist

clmdrv%WRITEINTC2 defines the output interval for CLM Acceptable values
range from 1 to 24. Typical value used in the LIS runs is 3.

clmdrv%CLM2 RFILE specifies the CLM active restart file.
clmdrv%CLM2 CHTFILE specifies the canopy top and bottom heights for each

vegetation type.
clmdrv%CLM2 ISM specifies the initial soil moisture used in the cold start

runs.
clmdrv%CLM2 ISCV specifies the initial snow mass used in the cold start runs.

8.1.10 noah namelist

noahdrv%WRITEINTN defines the output interval for Noah Acceptable values
range from 1 to 24. Typical value used in the LIS runs is 3.

noahdrv%NOAH RFILE specifies the Noah active restart file.
In the noah namelist of the card file these parameters must correspond with

the domain resolution set in the domain namelist:

28

noahdrv%NOAH_MGFILE
noahdrv%NOAH_ALBFILE

noahdrv%NOAH MGFILE and noahdrv%NOAH ALBFILE specify where to find
certain Noah related input parameter data files.

noahdrv%NOAH VFILE specifies the Noah static vegetation parameter file.
noahdrv%NOAH SFILE specifies the Noah soil parameter file.
noahdrv%NOAH MXSNAL specifies the Noah max snow free albedo.
noahdrv%NOAH TBOT specifies the Noah bottom temperature
noahdrv%NOAH ISM specifies the initial soil moisture used in the cold start

runs.
noahdrv%NOAH IT specifies the initial skin temperature used in the cold start

runs.
noahdrv%NOAH NVEGP specifies the number of static vegetation parameters

specified for each veg type.
noahdrv%NOAH NSOILP specifies the number of static soil parameters speci-

fied.

8.1.11 vic namelist

vicdrv%WRITEINTV defines the output interval for VIC Acceptable values range
from 1 to 24. Typical value used in LIS runs is 3.

vicdrv%VIC NLAYER specifies the number of soil layers in VIC.
vicdrv%VIC NNODE specifies the number of soil thermal nodes in VIC.
vicdrv%VIC NNODE specifies the number of snow bands in VIC.
vicdrv%VIC NNODE specifies the number of root zones in VIC.
vicdrv%VIC SFILE specifies the VIC soil parameter file.
vicdrv%VIC VEGLIBFILE specifies the VIC vegetation parameter file.

29

9 Output Data Processing

This section describes how to process the generated output.
The output datasets created by running the LIS executable are written into

sub-directories of the $WORKING/LIS/OUTPUT/ directory (created at run-
time). These sub-directories are named either EXP999 (by default).

The output data consists of ASCII text files and model output in binary
format.

For example, assume that you performed a “1/4 deg Noah with GEOS
forcing” run, with an experiment code value of 999. This run will produce a
$WORKING/LIS/OUTPUT/EXP999/ directory. This directory will contain:

File Name Synopsis
Noahstats.dat Statistical summary of output
lisdiag.dat Run-time log file (currently empty)
NOAH Directory containing output data

The NOAH directory will contain a 2001/20010611 sub-directory. Its con-
tents are the output files generated by the executable. They are:

LIS.E999.2001061100.NOAHgbin

LIS.E999.2001061103.NOAHgbin

LIS.E999.2001061106.NOAHgbin

LIS.E999.2001061109.NOAHgbin

LIS.E999.2001061112.NOAHgbin

LIS.E999.2001061115.NOAHgbin

LIS.E999.2001061118.NOAHgbin

LIS.E999.2001061121.NOAHgbin

Note, each file-name contains a date-stamp marking the year, month, day,
and hour that the data corresponds to. The output data files for CLM and VIC
are similar.

The generated output can be written in a 2-D grid format or as a 1-d vector.
If written as a 1-d vector, the output must be converted into a 2-d grid before it
can be visualized, for example, with GrADS (see http://grads.iges.org/grads/).
The following section describes some helpful scripts that does this conversion.

9.1 Building mapto2D

This sub-section describes how to build the mapto2D executable used for con-
verting the 1-d vector data into a 2-d grid.

To build the executable:

30

http://grads.iges.org/grads/

1. Change directory into $WORKING/LIS/postproc

2. Run the compile.sh script: % sh compile.sh

9.2 Running mapto2D

This sub-section describes how to run the mapto2D executable used for con-
verting the 1-d vector data into a 2-d grid.

To post-process the output files run:

1. Change directory into $WORKING/LIS/postproc

2. Run mapto2D : % mapto2D file res var lsm

where:

file specifies the name of the particular output file to process.

res specifiles the resolution of the run. It must be the same value as
LIS%d%DOMAIN. See Section 8.1.1.

var specifiles the number of the variable to extract and process. See
Tables 9.3, 9.4, and 9.5.

lsm specifies the lsm used to generate the output. Acceptable values are
clm, noah, or vic.

For example, assume that you performed a “1/4 deg Noah with GEOS forc-
ing” run. To extract and process “Temperature of bare soil” at hour 03 of 11
June 2001:

% mapto2D ../OUTPUT/EXP999/NOAH/2001/20010611/LIS.E999.2001061103.NOAHgbin
2 14 noah

For this example, mapto2D will generate gridoutV15.1gs4r.
For those familiar with GrADS, there is a sample GrADS control file, grid-

out.ctl, included in the $WORKING/LIS/postproc directory, which may be used
to display this example.

31

9.3 CLM Output

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Snowf Snowfall rate kg/m2/s

7 Rainf Rainfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qsm Snowmelt kg/m2/s

12 DelSoilMoist Change in soil moisture kg/m2

13 DelSWE Change in snow water equivalent kg/m2

14 SnowT Snow Temperature K

15 VegT Vegetation Canopy Temperature K

16 BaresoilT Temperature of bare soil K

17 AvgSurfT Average Surface Temperature K

18 RadT Surface Radiative Temperature K

19 Albedo Surface Albedo, All Wavelengths -

20 SWE Snow Water Equivalent kg/m2

21 SoilMoist Average layer 1 soil moisture kg/m2

22 SoilMoist Average layer 2 soil moisture kg/m2

23 SoilMoist Average layer 3 soil moisture kg/m2

24 SoilMoist Average layer 4 soil moisture kg/m2

25 SoilMoist Average layer 5 soil moisture kg/m2

32

26 SoilMoist Average layer 6 soil moisture kg/m2

27 SoilMoist Average layer 7 soil moisture kg/m2

28 SoilMoist Average layer 8 soil moisture kg/m2

29 SoilMoist Average layer 9 soil moisture kg/m2

30 SoilMoist Average layer 10 soil moisture kg/m2

31 SoilWet Total Soil Wetness -

32 TVeg Vegetation transpiration kg/m2/s

33 ESoil Bare soil evaporation kg/m2/s

34 RootMoist Root zone soil moisture kg/m2

35 ACond Aerodynamic conductance m/s

ALMA Optional Forcing Output

Number Variable Description Units

36 Wind Near surface wind magnitude m/s

37 Rainf Rainfall rate kg/m2/s

38 Snowf Snowfall rate kg/m2/s

39 Tair Near surface air temperature K

40 Qair Near surface specific humidity kg/kg

41 PSurf Surface pressure Pa

42 SWdown Surface incident shortwave radiation W/m2

43 LWdown Surface incident longwave radiation W/m2

33

9.4 Noah Output

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Snowf Snowfall rate kg/m2/s

7 Rainf Rainfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qsm Snowmelt kg/m2/s

12 DelSoilMoist Change in soil moisture kg/m2

13 DelSWE Change in snow water equivalent kg/m2

14 AvgSurfT Average Surface Temperature K

15 Albedo Surface Albedo, All Wavelengths -

16 SWE Snow Water Equivalent kg/m2

17 SoilMoist Average layer 1 soil moisture kg/m2

18 SoilMoist Average layer 2 soil moisture kg/m2

19 SoilMoist Average layer 3 soil moisture kg/m2

20 SoilMoist Average layer 4 soil moisture kg/m2

21 SoilWet Total Soil Wetness -

22 TVeg Vegetation transpiration kg/m2/s

23 ESoil Bare soil evaporation kg/m2/s

24 RootMoist Root zone soil moisture kg/m2

34

ALMA Optional Forcing Output

Number Variable Description Units

25 Wind Near surface wind magnitude m/s

26 Rainf Rainfall rate kg/m2/s

37 Snowf Snowfall rate kg/m2/s

28 Tair Near surface air temperature K

29 Qair Near surface specific humidity kg/kg

30 PSurf Surface pressure Pa

31 SWdown Surface incident shortwave radiation W/m2

32 LWdown Surface incident longwave radiation W/m2

35

9.5 VIC Output

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Rainf Rainfall rate kg/m2/s

7 Snowf Snowfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qfz Re-freezing of water in the snow kg/m2/s

12 SnowT Snow Temperature K

13 AvgSurfT Average Surface Temperature K

14 RadT Surface Radiative Temperature K

15 Albedo Surface Albedo, All Wavelengths -

16 SoilMoist Average layer 1 soil moisture kg/m2

17 SoilMoist Average layer 2 soil moisture kg/m2

18 SoilMoist Average layer 3 soil moisture kg/m2

19 TVeg Vegetation transpiration kg/m2/s

20 ESoil Bare soil evaporation kg/m2/s

21 SoilWet Total Soil Wetness -

22 RootMoist Root zone soil moisture kg/m2

23 SWE Snow Water Equivalent kg/m2

24 Qsm Snowmelt kg/m2/s

25 DelSoilMoist Change in soil moisture kg/m2

26 DelSWE Change in snow water equivalent kg/m2

27 ACond Aerodynamic conductance m/s

36

ALMA Optional Forcing Output

Number Variable Description Units

28 Wind Near surface wind magnitude m/s

29 Tair Near surface air temperature K

30 PSurf Surface pressure Pa

31 SWdown Surface incident shortwave radiation W/m2

32 LWdown Surface incident longwave radiation W/m2

37

A LIS Card File

&driver
LIS%d%DOMAIN = 4
LIS%d%LSM = 1
LIS%f%FORCE = 2
LIS%d%SOIL = 2
LIS%p%LAI = 2
/

&lis_run_inputs
LIS%o%EXPCODE = 444
LIS%p%VCLASS = 1
LIS%p%NT = 13
LIS%f%NF = 10
LIS%f%NMIF = 15
LIS%f%ECOR = 0
LIS%o%WFOR = 1
LIS%o%WSINGLE = 0
LIS%o%WPARAM = 0
LIS%o%WTIL = 0
LIS%o%WOUT = 1
LIS%o%STARTCODE = 2
LIS%t%SSS = 0
LIS%t%SMN = 00
LIS%t%SHR = 21
LIS%t%SDA = 10
LIS%t%SMO = 05
LIS%t%SYR = 2001
LIS%t%ENDCODE = 1
LIS%t%ESS = 0
LIS%t%EMN = 00
LIS%t%EHR = 21
LIS%t%EDA = 11
LIS%t%EMO = 05
LIS%t%EYR = 2001
LIS%t%TS = 1800
LIS%d%UDEF = -9999.
LIS%o%ODIR = "OUTPUT"
LIS%o%DFILE = "lisdiag"
LIS%f%GPCPSRC = 0
LIS%f%RADSRC = 0
/
&domain
LIS%d%kgds(1) = 0
LIS%d%kgds(2) = 20

38

LIS%d%kgds(3) = 17
LIS%d%kgds(4) = 27875
LIS%d%kgds(5) = -97625
LIS%d%kgds(6) = 128
LIS%d%kgds(7) = 31875
LIS%d%kgds(8) = -92875
LIS%d%kgds(9) = 250
LIS%d%kgds(10) = 250
LIS%d%kgds(11) = 64
LIS%d%kgds(20) = 255
LIS%d%kgds(41) = 0
LIS%d%kgds(42) = 1440
LIS%d%kgds(43) = 600
LIS%d%kgds(44) = -59875
LIS%d%kgds(45) = -179875
LIS%d%kgds(46) = 128
LIS%d%kgds(47) = 89875
LIS%d%kgds(48) = 179875
LIS%d%kgds(49) = 250
LIS%d%kgds(50) = 250
LIS%d%MAXT = 1
LIS%d%MINA = 0.05
/
&parms
LIS%p%MFILE = "GVEG/1_4deg/UMD_AVHRR60mask0.25.bfsa"
LIS%p%VFILE = "GVEG/1_4deg/UMD_AVHRR60G0.25.bfsa"
LIS%p%SAFILE = "BCS/1_4deg/sand60.bfsa"
LIS%p%CLFILE = "BCS/1_4deg/clay60.bfsa"
LIS%p%ISCFILE = "BCS/1_4deg/soicol60.bfsa"
LIS%p%ELEVFILE = "GVEG/1_4deg/eldif_geos3_60.25.bin"
LIS%p%AVHRRDIR = "./input/AVHRR_LAI"
LIS%p%MODISDIR = "./input/MODIS_LAI"
/
&geos
geosdrv%GEOSDIR = "/X6RAID/DATA/GEOS/BEST_LK"
geosdrv%NROLD = 181
geosdrv%NCOLD = 360
geosdrv%NMIF = 13
/

&gdas
gdasdrv%GDASDIR = "./input/FORCING/GDAS"
gdasdrv%NROLD = 256
gdasdrv%NCOLD = 512
gdasdrv%NMIF = 15
/

39

&cmap
cmapdrv%CMAPDIR = "./input/CMAP"
cmapdrv%NROLD = 181
cmapdrv%NCOLD = 360
/
&agrmet
agrmetdrv%AGRMETDIR = "/X6RAID/DATA/AGRMET"
/
&clm2
clmdrv%WRITEINTC2 = 3
clmdrv%CLM2_RFILE = "clm2.rst"
clmdrv%CLM2_VFILE = "BCS/clm_parms/umdvegparam.txt"
clmdrv%CLM2_CHTFILE = "BCS/clm_parms/clm2_ptcanhts.txt"
clmdrv%CLM2_ISM = 0.45
clmdrv%CLM2_IT = 290.0
clmdrv%CLM2_ISCV = 0.
/

&noah
noahdrv%WRITEINTN = 3
noahdrv%NOAH_RFILE = "noah.rst"
noahdrv%NOAH_MGFILE = "BCS/1_4deg/NOAH/"
noahdrv%NOAH_ALBFILE = "BCS/1_4deg/NOAH/"
noahdrv%NOAH_VFILE = "BCS/noah_parms/noah.vegparms.txt"
noahdrv%NOAH_SFILE = "BCS/noah_parms/noah.soilparms.txt"
noahdrv%NOAH_MXSNAL = "BCS/1_4deg/NOAH/maxsnalb.bfsa"
noahdrv%NOAH_TBOT = "BCS/1_4deg/NOAH/tbot.bfsa"
noahdrv%NOAH_ISM = 0.30
noahdrv%NOAH_IT = 290.0
noahdrv%NOAH_NVEGP = 7
noahdrv%NOAH_NSOILP = 10
/
&vic
vicdrv%WRITEINTVIC = 3
vicdrv%VIC_NLAYER = 3
vicdrv%VIC_NNODE = 5
vicdrv%VIC_SNOWBAND = 1
vicdrv%VIC_ROOTZONES = 2
vicdrv%VIC_SFILE = "./BCS/vic_parms/soil.txt"
vicdrv%VIC_VEGLIBFILE = "./BCS/vic_parms/veg_lib.txt"
/
&mos
mosdrv%WRITEINTM = 3
mosdrv%MOS_RFILE = "mos.rst"
mosdrv%MOS_MFILE = "mosgdas.rst"
mosdrv%MOS_VFILE = "./BCS/mos_parms/real.vegiparms.txt"

40

mosdrv%MOS_MVFILE = "./BCS/mos_parms/real.monvegpar.txt"
mosdrv%MOS_SFILE = "./BCS/mos_parms/real.soilparms.txt"
mosdrv%MOS_KVFILE = "./BCS/mos_parms/real.vegiparms.randy.txt"
mosdrv%MOS_KMVFILE = "./BCS/mos_parms/real.monvegpar.randy.txt"
mosdrv%MOS_KSFILE = "./BCS/mos_parms/real.soilparms.randy.txt"
mosdrv%MOS_POFILE = ""
mosdrv%MOS_SIFILE = ""
mosdrv%MOS_SLFILE = ""
mosdrv%MOS_ISM = 0.3
mosdrv%MOS_IT = 290.0
mosdrv%MOS_IC = 1
mosdrv%MOS_SMDA = 0
mosdrv%MOS_TDA = 0
mosdrv%MOS_SDA = 0
mosdrv%MOS_NVEGP = 24
mosdrv%MOS_NMVEGP = 6
mosdrv%MOS_NSOILP = 10
mosdrv%MOS_NRET = 64
/

41

B Makefile

Set up special characters
null :=
space := $(null) $(null)
doctool :=../../utils/docsgen.sh

Check for directory in which to put executable
ifeq ($(MODEL_EXEDIR),$(null))
MODEL_EXEDIR := .
endif

Check for name of executable
ifeq ($(EXENAME),$(null))
EXENAME := LIS
endif

Check if SPMD is defined in "misc.h"
Ensure that it is defined and not just "undef SPMD" set in file
ifeq ($(SPMD),$(null))
SPMDSET := $(shell /bin/grep SPMD misc.h)
ifneq (,$(findstring define,$(SPMDSET)))
SPMD := TRUE

else
SPMD := FALSE

endif
endif

Determine platform
UNAMES := $(shell uname -s)
UMACHINE := $(shell uname -m)

ifeq ($(UNAMES),IRIX64)
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

ifeq ($(UNAMES),OSF1)

LIB_MPI := /usr/lib
INC_MPI := /usr/include
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

42

endif

ifeq ($(UMACHINE), i686)

MPI_PREFIX := /data1/jim/local/mpich-1.2.4-absoft
LIB_MPI := $(MPI_PREFIX)/lib
INC_MPI := $(MPI_PREFIX)/include
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

Load dependency search path.
dirs := . $(shell cat Filepath)
Set cpp search path, include netcdf
cpp_dirs := $(dirs) $(INC_NETCDF) $(INC_MPI)
cpp_path := $(foreach dir,$(cpp_dirs),-I$(dir)) # format for command line

Expand any tildes in directory names. Change spaces to colons.
VPATH := $(foreach dir,$(cpp_dirs),$(wildcard $(dir)))
VPATH := $(subst $(space),:,$(VPATH))

#--
Primary target: build the model
#--
all: $(MODEL_EXEDIR)/$(EXENAME)

Get list of files and determine objects and dependency files
FIND_FILES = $(wildcard $(dir)/*.F $(dir)/*.f $(dir)/*.F90 $(dir)/*.c)
FILES = $(foreach dir, $(dirs),$(FIND_FILES))
SOURCES := $(sort $(notdir $(FILES)))
DEPS := $(addsuffix .d, $(basename $(SOURCES)))
OBJS := $(addsuffix .o, $(basename $(SOURCES)))
DOCS := $(addsuffix .tex, $(basename $(SOURCES)))

$(MODEL_EXEDIR)/$(EXENAME): $(OBJS)
$(FC) -o $@ $(OBJS) $(FOPTS) $(LDFLAGS)

debug: $(OBJS)
echo "FFLAGS: $(FFLAGS)"
echo "LDFLAGS: $(LDFLAGS)"
echo "OBJS: $(OBJS)"

#***
#********** Architecture-specific flags and rules***********************

43

#***

#--
SGI
#--

ifeq ($(UNAMES),IRIX64)

ESMF_ARCH = IRIX64
FC := f90
CPP := /lib/cpp

Library directories
LIB_DIR = ../lib/sgi-64/
HDFLIBDIR = $(LIB_DIR)
GFIOLIBDIR = $(LIB_DIR)
CPPFLAGS := -P
PSASINC :=
CFLAGS := $(cpp_path) -64 -c -O2 -OPT:Olimit=0 -static -DIRIX64
FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH)
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -O2 -OPT:Olimit=0 -static
Use this option if using OPENDAP mode
#FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH)
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -O2 -OPT:Olimit=0 -static -DOPENDAP

FOPTS = $(LIB_DIR)bacio_64_sgi $(LIB_DIR)w3lib_64_sgi
LDFLAGS = -64 -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpi
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -macro_expand

FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .F90 .c .o

.F90.o:
$(FC) $(FFLAGS) $<

44

.c.o:
cc $(cpp_path) $(CFLAGS) $<

endif
#---
Compaq alpha - Halem cluster
#---
ifeq ($(UNAMES),OSF1)

ESMF_ARCH = alpha
FC := f90
CPP := /lib/cpp

Library directories
LIB_DIR = ../lib/alpha-32/
CPPFLAGS := -P
PSASINC :=
CFLAGS := $(cpp_path) -n32 -DOSF1
FFLAGS = $(cpp_path) -c -cpp -automatic -convert big_endian
-assume byterecl -arch ev6 -tune ev6 -fpe3\

-I$(MOD_ESMF)/$(ESMF_ARCH) -DOSF1 \
-DHIDE_SHR_MSG -DNO_SHR_VMATH

FFLAGS_DOTF90 = -DHIDE_SHR_MSG -DOSF1 -free -fpe3 -DNO_SHR_VMATH
FFLAGS_DOTF = -extend_source -omp -automatic
FOPTS = $(LIB_DIR)bacio_32_alpha $(LIB_DIR)w3lib_32_alpha
LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpi
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .f .f90 .F90 .c .o

.f.o:
$(FC) $(FFLAGS) $<
.F90.o:
$(FC) $(FFLAGS) $<

45

.c.o:
cc -c $(cpp_path) $(CFLAGS) $<
.f90.o:
$(FC) $(FFLAGS) $<

endif
#--
Linux
#--

ifeq ($(UMACHINE),i686)
ESMF_ARCH = linux_absoft

ifeq ($(ESMF_ARCH),linux_ifc)

FC := $(MPI_PREFIX)/bin/mpif90
CPP := /lib/cpp

CFLAGS := $(cpp_path) -c -O2
FFLAGS = $(cpp_path) -c -I$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG
-DNO_SHR_VMATH -O
LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpich

endif

ifeq ($(ESMF_ARCH),linux_absoft)

FC := $(MPI_PREFIX)/bin/mpif90
CC := $(MPI_PREFIX)/bin/mpicc
CPP := /lib/cpp

CFLAGS := $(cpp_path) -c -O2 -DABSOFT -DLITTLE_ENDIAN
FFLAGS = $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1
-p$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT
-DLITTLE_ENDIAN
Use this option if using OPENDAP mode
#CFLAGS := $(cpp_path) -c -O2 -DABSOFT -DLITTLE_ENDIAN -DOPENDAP
#FFLAGS = $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1
-p$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT
-DLITTLE_ENDIAN -DOPENDAP
LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpich -lU77 -lm

endif

ifeq ($(ESMF_ARCH),linux_lf95)

46

FC := $(MPI_PREFIX)/bin/mpif90
CPP := /lib/cpp
CFLAGS := $(cpp_path) -c -O -DUSE_GCC -DLAHEY -DLITTLE_ENDIAN
FFLAGS := $(cpp_path) -c -O -DHIDE_SHR_MSG -DLINUX -DNO_SHR_VMATH
-I$(MOD_ESMF)/$(ESMF_ARCH) -DLAHEY -DLITTLE_ENDIAN
LDFLAGS := -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -L$(LIB_MPI) -lmpich
-s --staticlink

endif

Library directories
LIB_DIR = ../lib/pc-32/$(ESMF_ARCH)/
HDFLIBDIR = $(LIB_DIR)
GFIOLIBDIR = $(LIB_DIR)
CPPFLAGS := -P
PSASINC :=
FOPTS = $(LIB_DIR)bacio_32_pclinux $(LIB_DIR)w3lib_32_pclinux
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -macro_expand
FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .F90 .c .o

.F90.o:
$(FC) $(FFLAGS) $<
.c.o:
$(CC) $(cpp_path) $(CFLAGS) $<

endif

RM := rm
Add user defined compiler flags if set, and replace FC if USER option set.
FFLAGS += $(USER_FFLAGS)

47

ifneq ($(USER_FC),$(null))
FC := $(USER_FC)
endif

clean:
$(RM) -f *.o *.mod *.stb $(MODEL_EXEDIR)/$(EXENAME)

realclean:
$(RM) -f *.o *.d *.mod *.stb $(MODEL_EXEDIR)/$(EXENAME)
doc:
$(doctool)
#--
#!!!!!!!!!!!!!!!!DO NOT EDIT BELOW THIS LINE.!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#--
These rules cause a dependency file to be generated for each source
file. It is assumed that the tool "makdep" (provided with this
distribution in clm2/tools/makdep) has been built and is available in
the user’s $PATH. Files contained in the clm2 distribution are the
only files which are considered in generating each dependency. The
following filters are applied to exclude any files which are not in
the distribution (e.g. system header files like stdio.h).
#
1) Remove full paths from dependencies. This means gnumake will not break
if new versions of files are created in the directory hierarchy
specified by VPATH.
#
2) Because of 1) above, remove any file dependencies for files not in the
clm2 source distribution.
#
Finally, add the dependency file as a target of the dependency rules. This
is done so that the dependency file will automatically be regenerated
when necessary.
#
i.e. change rule
make.o : make.c make.h
to:
make.o make.d : make.c make.h
#--
DEPGEN := ./MAKDEP/makdep -s F
%.d : %.c
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.f
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.F90

48

@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.F
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
#
if goal is clean or realclean then don’t include .d files
without this is a hack, missing dependency files will be created
and then deleted as part of the cleaning process
#
INCLUDE_DEPS=TRUE
ifeq ($(MAKECMDGOALS), realclean)
INCLUDE_DEPS=FALSE

endif
ifeq ($(MAKECMDGOALS), clean)
INCLUDE_DEPS=FALSE

endif

ifeq ($(INCLUDE_DEPS), TRUE)
-include $(DEPS)
endif

49

References

[1] GrADS. http://grads.iges.org/grads/grads.html.

[2] Protex documenting system. http://gmao.gsfc.nasa.gov/software/protex.

[3] CLM. http://www.cgd.ucar.edu/tss/clm.

[4] DODS. http://www.unidata.ucar.edu/packages/dods/.

[5] Noah. ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/.

[6] VIC. http://hydrology.princeton.edu/research/lis/index.html.

[7] W3FI63 program. http://dss.ucar.edu/datasets/ds609.1/software/mords/w3fi63.f.

[8] G. J. Collatz, C Grivet, J. T. Ball, and J. A. Berry. Physiological and
environmental regulation of stomatal conducatance: Photosynthesis and
transpiration: A model that includes a laminar boundary layer. Agric.
For. Meteorol., 5:107–136, 1991.

[9] Chen. F., Mitchell. K., Schaake. J, Xue. J, Pan. H, Koren. V., Ek. M Duan,
and A. Betts. Modeling of land-surface evaporation by four schemes and
comparison with fife observations. J. Geophys. Res., 101(D3):7251–7268,
1996.

[10] P. G. Jarvis. The interpretation of leaf water potential and stomatal con-
ductance found in canopies of the field. Phil. Trans. R. Soc., 273:593–610,
1976.

[11] L. A. Richards. Capillary conduction of liquids in porous media. Physics,
1:318–333, 1931.

[12] E. Rogers, T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin,
N. W. Junker, and Y. Lin. Changes to the operational ”early” eta anal-
ysis/forecast system at the national centers of environmental prediction.
Wea. Forecasting, 11:391–413, 1996.

50

	Introduction
	Background
	LIS
	LIS driver
	Community Land Model (CLM)
	The Community Noah Land Surface Model
	Variable Infiltration Capacity (VIC) Model
	GrADS-DODS Server

	Preliminaries
	Running Modes
	Obtaining the Source Code
	Downloading the Source Code
	Source files
	Scripts
	Post-processing

	Obtaining the Datasets
	Downloading the Source Code
	Downloading Parameter Datasets
	Downloading the Forcing Datasets

	Building the Executable
	General Build Instructions
	Required Software Libraries
	Modifying the Makefile

	Defining source directories for compilation
	Defining components while building the executable
	Compiling GrADS-DODS Support
	Generating documentation

	Running the Executable
	Configuring Run Via LIS Card File
	driver namelist
	lis_run_inputs namelist
	domain namelist
	parms namelist
	geos namelist
	gdas namelist
	cmap namelist
	agrmet namelist
	clm2 namelist
	noah namelist
	vic namelist

	Output Data Processing
	Building mapto2D
	Running mapto2D
	CLM Output
	Noah Output
	VIC Output

	LIS Card File
	Makefile

